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involved. The decrease is most rapid at 0° and 
progressively becomes slower up to 25°, for all 
the solutions containing a high proportion of 
monovalent ions. Solutions containing only 
magnesium sulfate and water exhibit the reverse 
behavior. The decrease is slowest for the most 
dilute solutions (potassium chloride only) and 
progressively becomes more rapid to those of 
higher concentration (sodium chloride). These 
effects are best observed by plotting coefficients 
against concentrations. 

Effects of Temperature.—The temperature co­
efficients of equivalent conductance considered 
decrease by about 1.5 to 2.0% of their values for 
each degree increase in temperature. The fact 
that they decrease is consistent with measure­
ments showing coefficients to be negative at much 
higher temperatures. This decrease is most 
rapid for water and becomes less rapid the more 
concentrated the solution, except for solutions 
containing only magnesium sulfate and water. 
This difference and also the one mentioned in the 
preceding paragraph are likely due to the fact that 
magnesium sulfate is a different type of electro­
lyte in that it yields divalent ions. 

Effects of Adding a Second Salt.—The addi­
tion of a salt that forms solutions with tempera­
ture coefficients higher or lower than those of 
sodium chloride solutions to the latter, produces 
solutions with coefficients of intermediate value. 
The magnitude of the intermediate value depends 
upon the concentration, and the temperature, 
even though the mole ratios are kept constant. 
The effect of adding a salt is either in opposition 
to or in addition to the effect of increasing the con­
centration, depending upon whether the coeffi­
cients of solutions of the added salt are higher or 
lower, respectively, than those of solutions con­
taining only sodium chloride and water. For 
example, the addition of magnesium sulfate to 
sodium chloride solutions increases the tempera-

During recent years osmotic pressure measure­
ments have assumed increased importance as a 
means of determining molecular weights of high 
polymeric substances.2a,b Although the theory of 
osmotic pressures for simple systems has been well 
formulated, little attention has been devoted to 
the theoretical aspects of osmotic pressures for 

(1) Original manuscript received July 12, 1943. 
(2) (a) G. V, Schuli, Z, physik. Chem., 176, 317 (1936); R. M. 

Fuoss and D. J. Mead, J. Phys. Chem., 47, 59 (1943); P. J. Flory, 
T H I S JOUHNAL, 65, 372 (1943). See also H. Mark, "Physical Chem­
istry of High Polymeric Systems," Interscience Publishers, New 
York, N. Y., 1940, p. 228, for a general discussion, (b) G. Gee 
Trans. Faraday Sne.. 36. 1171 (1940) 

d ture coefficients of the latter. Thus, two oppos-
U ing factors are in operation, the effect of adding a 
>f salt with a larger temperature coefficient out-
y weighing the effect of increasing the concentration. 
e When temperature coefficient is considered as a 
t function of concentration, there is a pronounced 
i maximum in the temperature coefficient at con-
f centration no. 3 for magnesium sulfate solutions 
e at 0°. Slight maxima occur also at the same con-
s centration for this salt at 25° and for potassium 

chloride solutions at 0°. These maxima are re­
flected in the corresponding sodium chloride solu-

1 tions to which the salts mentioned have been 
r added. The maxima, particularly for the magne-
t sium sulfate solutions at 0°, are larger than could 

be attributed to experimental errors, and as yet 
i we can offer no explanation for them. It is a 
t noteworthy fact that they occur mainly at 0°. 

; Summary 
1. An equation is recommended for calculat-

» ing the equivalent conductances of solutions as a 
t function of centigrade temperature. The maxi-
. mum deviation of the calculated from the experi­

mental equivalent conductance was 0.02%, and 
the average deviation was only 0.006%. 

2. By use of the differentiated form of the 
f equation the temperature coefficients of equiva-
s lent conductance of twenty different solutions 

have been calculated with five-place accuracy at 
j 0, 5, 10, 15, 20 and 25°. Also temperature co­

efficients of specific conductance have been cal-
' culated at 0, 5, 10, 15, 18, 20 and 25° for the con-
l ductivity water used and for 0.01 demal and 0.1 

demal standard potassium chloride solutions. 
3. Variations of temperature coefficients of 

electrical conductance of the salt solutions, due 
to concentration changes, temperature changes 
and the addition of a second salt have been de­
termined. 
COLLEGE STATION, TEXAS RECEIVED AUGUST 31, 1943 

systems with mixed solvents. Since G. Gee2 

has carried out measurements under such condi­
tions, it appears desirable to consider thermo-
dynamically the significance of osmotic pressures 
for mixed solvents and to find out just what it is 
that one measures experimentally. 

For an ordinary solution consisting of a solvent 
(A) and a solute (S), the osmotic pressure is a 
definite thermodynamic property of the solution. 
It is defined simply as the excess pressure which 
must be applied to the solution to increase the 
partial pressure of the solvent up to the vapor 
pressure of the pure solvent at the same tempera -
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ture. If p\ is the vapor pressure of pure A and 
pk the partial pressure of A for the solution, then 
the osmotic pressure is given by3 

Vi PL 
(D 

where V\ is the partial molar volume of A in the 
solution. Although one usually thinks of a semi­
permeable membrane in connection with osmotic 
pressure, it will be recognized that such a mem­
brane need not exist to give equation (1) a definite 
meaning. Of course, if pure A is separated from a 
solution of S in A by a membrane impermeable to 
S, then P is just the excess pressure that must be 
applied to the solution to prevent solvent from 
passing through the membrane. 

Consider now a solution of solute (S) in a mix­
ture of solvents (A and B). One could define an 
osmotic pressure for each of the solvents by means 
of equations of type (1). That, however, would in 
general give two different osmotic pressures, 
neither of which would correspond to a measured 
pressure if one used a membrane permeable to 
both A and B but impermeable to S. Accordingly, 
it seems desirable to define a new osmotic pres­
sure, bearing in mind the experiment which might 
be used for the measurement. 

Suppose that a solution of S in A and B is 
separated from a mixture of A and B by a mem­
brane impermeable to S only (Fig. 1). In the 
following discussion the term "solution" will be 
applied to the phase containing S and the term 
"solvent" to the other phase. Let Xi, pi and Vi 
represent, respectively, the mole fraction, partial 
pressure and partial molar volume of the t'-th com­
ponent in the solution, and let the same symbols 
with primes (x{, p{, V{) represent the correspond­
ing quantities for the solvent. Also let p\ be the 
vapor pressure of the pure fth component at the 
temperature of the experiment. For the sake of 
simplicity, it will first be supposed that Raoult's 
law holds. Since for high polymeric substances4 

and for many pairs of solvents, Raoult's law does 
not hold, the treatment will then be followed by a 
consideration of the effect of deviations from 
Raoult's law. 

System with Raoult's Law Valid.—If Raoult's 
law holds, then 

and 
ft = *d>", 

Pi = x[p\ (2) 

To prevent A from passing through the membrane, 
it is necessary to apply a pressure P A on the 
solution, where 

PK - ^- In KT ,„P± 
VK PL VK XK 

(3) 

(3) See, for example, MacDougall, "Physical Chemistry," rev. 
ed., The Macmillan Co., New York. N. Y., 1943, pp. 255-257. 

(4) M. L. Huggins, J. Phys. Chem.. 4«, 151 (1948); P. J. Flory, 
J. Chem. Phys.. 10, 15 (1842). 

Likewise to prevent B from passing through the 
membrane, a pressure P B must be applied, where 

P 8 = I I 1„ £5 , 1 * 1 In^S (4) 
K8 P* VB * B 

In general P A will not equal P B ; to make them 
equal, it is necessary that 

i - in ** = J - In ^S (5) 
VK **• VB XB 

It is seen from equation (5) that if P A equals P B , 
the mole ratio of A to B on the two sides of the 
membrane will not be the same unless V& = Vs. 

A 

M 

P 

B A B S 

M 
Fig. 1.—Solution (A.B.S,) separated from solvent (A1B) 

by membrane (M-M) which is impermeable to S. 

Let us now investigate what will happen if the 
experiment illustrated in Fig. 1 is started with 
the same mole ratio of A to B on each side of the 
membrane. Then 

and 

*£ 
XB 

PKVK 

XK 

= P*VB 

(6) 

(7) 

Suppose VA > VB; then P A < P B - If a pressure 
P A is applied to the solution, no A will pass 
through the membrane, but B will enter the solu­
tion, thus increasing the volume of the solution. 
On the other hand, if a pressure P B is applied, no 
B will pass through the membrane, but some A 
will leave the solution, thereby decreasing its 
volume. Evidently there will be some inter­
mediate pressure P (where P A < P < P B ) such 
that the volume of the solution will remain sta­
tionary. This will occur when the ratio of the 
number of moles of A leaving the solution to the 
number of moles of B entering the solution is in 
the inverse ratio of their partial molar volumes. 
When this state is obtained, one might be in­
clined to call P the "osmotic pressure" of the solu­
tion. Actually (if one waits long enough), P will 
gradually change as diffusion takes place until 
equation (5) holds, and only then will true equilib­
rium be established. Accordingly this method of 
using mixed solvents will make osmotic pressure 
measurements time consuming, because diffusion 
must take place and equilibrium cannot be reached 
by the application of pressure alone. Moreover, 
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the final pressure will not be the osmotic pressure 
of the original solution but will be defined as that 
of the equilibrated solution. 

To get the osmotic pressure of the original solu­
tion and to avoid diffusion, it would be necessary 
in principle to start with solvent and solution al­
ready satisfying equation (5). Under such cir­
cumstances an osmotic equilibrium can be es­
tablished simply by the application of pressure. 
In practice this would be almost impossible to 
realize (especially if Raoult's law does not hold), 
since it presupposes more knowledge than is 
generally available. 

It will now be shown that van't Hoff 's equation 
holds for dilute solutions even with mixed sol­
vents, providing the osmotic pressure is taken as 
the above-defined equilibrium pressure and pro­
viding Raoult's law applies. If a true equilib­
rium has been obtained, then PA = -PB = P, and 

KAP = RT In (*A/*A) 
VBP = RTIn ( ^ A B ) (8) 

In equations (8) the x's apply to the equilibrated 
solution and solvent and not necessarily to the 
original ones. But if xs is very small, then 
(X'A. — XA.)/XA "C 1 and {XB — *B) /*B -C 1. Then 
approximately 

~VKP = RT (*'*• ~ *A) 

and 

VBP = RT (** ~-?*\ (9) 

But from equations (9) it can be shown that 

(xjJx + XBVB)P = x„RT (10) 

Let NA, NB and Ns be the total number of moles of 
A, B and S in a volume V of solution. Then 

(NKVJ, + NBVB)P = NBRT 
or 

(V - NBV8)P = NBRT (11) 

Neglecting NsVs as compared to V, there is ob­
tained van't Hoff s equation 

PV = NBRT (12) 

If c equals the concentration of S in grams per unit 
volume, then 

PIc = RTIM (13) 

where M is the molecular weight of the solute. 
System not Subject to Raoult's Law.—If 

Raoult's law does not apply, then the thermo­
dynamic treatment of osmotic pressures for mixed 
solvents becomes more involved. The equations 
become complicated because cognizance must be 
taken of solvent non-idealities even when the 
system is infinitely dilute with respect to solute. 
Because of this persisting non-ideality, it is not 
obvious that van't Hoff's equation will apply at 
infinite dilution. 

However, if one assumes that Henry's law ap­

plies to the solute, it can be shown that van't 
Hoff's equation should be valid at infinite dilu­
tion regardless of the nature of the solvents as 
long as their vapors obey the perfect gas laws. 
The proof of this proposition rests upon the use of 
the three-component counterpart of the Duhem-
Margules equation, but the details of the calcula­
tion will not be supplied here. 

Discussion 

The first point to be noted in connection with 
the use of mixed solvents is that the composition of 
solvent will not be the same on each side of the 
membrane after osmotic equilibrium is estab­
lished. Starting with the same solvent ratio on 
both sides of the membrane, the apparent osmotic 
pressure (corresponding to a stationary volume) 
will not in general be the same as the equilibrium 
pressure. If the difference is appreciable, then 
the use of a dynamic method of measurement may 
lead to erroneous results. However, if the mole 
fraction of solute is small, the apparent osmotic 
pressure will be practically the same as the final 
pressure and the solvent composition will be sub­
stantially the same on the two sides of the mem­
brane. 

If Raoult's law holds, extrapolation of the 
osmotic pressure equations to infinite dilution will 
give van't Hoff's equation. In this event, cor­
rect molecular weights for solutes can be obtained 
by the usual simple means. On the other hand, if 
Raoult's law does not hold for the mixed solvents, 
extrapolation to infinite dilution of solute will not 
yield van't Hoff's equation unless the solute 
obeys Henry's law, which assumption is reason­
able. Accordingly, van't Hoff's equation can 
always be used in practice for extrapolation pur­
poses. 

Although the use of mixed solvents introduces 
some doubtful points, correct results can be ob­
tained but the measurements may be time con­
suming because of the necessity for diffusion tak­
ing place. Gee8 reports no complications in con­
nection with the use of mixed solvents; in fact he 
reports certain advantages. I t appears that the 
magnitudes of the new effects discussed in this 
paper are small for dilute solutions. What the 
effect will be on the slope of a curve in which 
P/c is plotted against c cannot be predicted simply. 

The author is indebted to Dr. R. H. Ewart of 
the United States Rubber Company for helpful 
discussion and suggestions. 

Summary 

The problem of osmotic pressures for solutions 
with mixed solvents is considered thermodynam-
ically. It is shown that in general the measured 
osmotic pressure has definite significance only if 
the solvent compositions are different on the two 
sides of the membrane and subject to certain re­
lationships. However, it is shown that van't 
Hoff's equation can be expected to hold for in-
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finitely dilute solutions. For concentrated solu- using mixed solvents, especially if a dynamic ap-
tions certain complications can be expected in the proach is employed. 
experimental determination of osmotic pressures URBANA, ILLINOIS RECEIVED JANUARY 13,1944 
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The Concentration Distribution in Two-Salt Moving Boundaries 

BV L. G. LONGSWORTH 

Introduction.—The development of the schlie-
ren scanning technique1 for studying the electro­
phoresis of proteins has, somewhat unexpectedly, 
provided a tool with which to investigate in detail 
the moving boundaries that have been used for 
the measurement of the transference numbers of 
strong electrolytes. Such boundaries, it will be 
recalled, are formed between two solutions of bi­
nary salts having a common ion, the salt present 
in the region into which the boundary moves on 
passage of the electric current being called the 
"leading" electrolyte whereas that behind the 
boundary is termed the "indicator" electrolyte. 
Boundaries of this type will be called "two-salt" 
boundaries in order to distinguish them from 
other types of moving boundaries such as protein 
boundaries2 and concentration boundaries.* 

According to the theory developed by Weber4 

the mixing effect of inter-diffusion at a two-salt 
boundary is balanced by a separating effect due 
to ion migration6 if the mobility, u\, of the indica­
tor ion constituent is less than the mobility, Mi, 
of the leading ion constituent and if the current is 
passed in the appropriate direction. Under these 
conditions the concentration distribution in the 
boundary for a given current density J is inde­
pendent of the time and the boundary velocity is 
given by the relation 

v = IT1/FCx (D 
in which F is the faraday, Ti the transference 
number of the leading ion constituent and G is 
the concentration, in equivalents per milliliter, 
in the body of the leading solution. Whereas the 
concentrations of the salt solutions forming the 
boundary initially may be selected independently 
of each other, the concentration, Cj, of the column 
of indicator electrolyte that is formed by the ad­
vancing boundary is not independent of Ci but is 
given by the relation 

C, = C1T1ZT1 (2) 
in which T1 is the transference number of the in­
dicator ion at the concentration Ci. If the bound­
ary is formed initially between the leading solu-

(1) Longsworth, T H I S JOURNAL, 61, 529 (1939). 
(2) Tiselius, Trans. Faraday Soc, SS, 524 (1937). 
(3) Longsworth, T H I S Jotmsi i . , 68, 1755 (1943). 
(4) H. Weber, "Die partiellen DiSerential-Gleichungen der 

mathematischen Physik," Braunschweig, 1910, 5th edition, chapter 
24. 

(6) Maclnnes and Cowperthwaite, Proc. Natl. Acad. Set., 15, 18 
(1929). 

tion and the indicator solution at a concentration 
Ci' which is different from that, Ci, required by 
equation (2), then, as will be demonstrated later in 
this paper, a concentration boundary between the 
indicator salt at the two concentrations Ci and Ci' 
remains near the initial boundary position as the 
two-salt boundary advances. 

In addition to the requirement that Mi < Mi 
there is the restriction that the boundary system 
be stable gravitationally. This means that if the 
indicator solution is less dense than the leading 
solution the latter must be underneath and the 
boundary must descend. If the indicator solu­
tion is more dense than the leading solution the 
latter must be on top and the boundary must rise. 
Moreover, since the densities of most salt solu­
tions increase with increasing concentration, 
gravitational stability also requires that the in­
itial indicator concentration, Ci', be equal to or 
greater than that, C1, of the adjusted indicator 
solution for a rising boundary whereas for a de­
scending boundary Ci' ^ C1. 

Under the conditions prevailing in previous 
work with two-salt boundaries the transition from 
one solution to the other occurs within less than a 
millimeter. Such a sharp boundary can be lo­
cated accurately with the aid of relatively simple 
optical arrangements, advantage being taken of 
t i e difference of refractive index at the boundary, 
and this is sufficient for a determination of the 
boundary displacement and hence the transfer­
ence number Ti. The optical devices previously 
employed have not, however, given information 
concerning the magnitude and distribution of the 
gradients in the boundary and the manner in 
which these vary with the current. This informa­
tion can now be obtained with the aid of the 
schlieren scanning camera. It is the purpose of 
this paper to report measurements of the gradients 
in typical boundaries and to show that they are 
in agreement with Weber's theory.4 

Experimental Results.—The patterns of Fig. 1, 
recorded during the electrolysis at 0.5°, of 0.1 N 
potassium iodate:0.1 N potassium chloride at a 
current density of 0.00655 amp./sq. cm., are 
typical of the results obtained in this research. 
The time interval between all of the patterns 
after the second was one hour. In order to avoid 
overlapping of the concentration boundary peak, 
each successive pattern has been displaced a fixed 
distance vertically. The line h» in each pattern 


